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ABSTRACT 

Stream bank erosion of the Osage River downstream of Bagnell Dam is naturally

occurring; however, it may be significantly worsened due to releases made from the dam 

to generate hydropower. In this study, six typical outflow release patterns from Bagnell 

Dam were evaluated to determine their effects, if any, on the stability and the rate and 

amount of erosion of the banks of the Osage River. 

The Bank Stability and Toe Erosion Model (BSTEM), version 5.2, was used to 

carry out the erosion and stability calculations. The model was validated by using data 

from another study and comparing the results from BSTEM with those of the other study. 

BSTEM produced very similar results, and it was thus concluded that it would provide a 

reliable analysis for this study. The six outflow scenarios were evaluated, and those that 

resulted in the greatest amount of erosion and bank instability were identified based on 

the model results. 

A sensitivity analysis was also completed to determine the input data necessary 

for BSTEM that would have the greatest impact on the model outcome. The input 

parameters evaluated in the sensitivity analysis included various geotechnical properties, 

assumptions regarding depth to the phreatic surface, and the timing and slope of the 

outflow hydrographs. 

The results ofthis study indicate that the streambanks ofthe Osage River are 

quite stable when erosion of the noncohesive toe material is not considered: however, 

when erosion is accounted for, most of the banks become unstable during the outflow 

scenarios. Based on the typical bank stratigraphy, the most common failure mechanism 

that would be encountered on the Osage River is mass wasting or cantilever failures. 
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1. INTRODUCTION 

1.1. GENERAL 

Bagnell Dam is located in Camden County, Missouri, and impounds water from 

the Osage River, forming Lake ofthe Ozarks. Construction of Bagnell Dam began in 

August of 1929 and was completed in April of 1931. The dam is a concrete gravity dam 

measuring 2,543 feet in length, with a spillway controlled by five tainter gates. The total 

length of the spillway is 520 feet [ 1]. 

The dam, owned by Ameren UE, was constructed for the purpose of generating 

hydroelectric power. Downstream of the dam, the Osage River flows for 80 miles to its 

confluence with the Missouri River. The demand for hydroelectric power generation 

varies greatly depending on the time of year, the time of day, as well as other factors. 

Because of this, there are generally large fluctuations in the discharges from Bagnell Dam 

that occur within a relatively short period of time. Erosion and subsequent stream bank 

instabilities are naturally-occurring processes in rivers such as the Osage River; however, 

they can be significantly exacerbated due to human activities, including releases made 

from dams to generate hydroelectric power [2]. 

The purpose of this thesis is to quantify the potential effects of various 

hydropower release scenarios from Bagnell Dam on erosion and bank instability for 

several cross-sections on the Osage River downstream of the dam. This was 

accomplished by calculating the amount of toe erosion that occurred at various times 

throughout each scenario, as well as the corresponding Factor of Safety (FS). The eroded 

cross-sections were also plotted alongside the original cross-section geometry to 

demonstrate visually the changes that occurred due to erosion. Both the toe erosion and 

the FS were determined using the program BSTEM (Bank Stability and Toe Erosion 

Model), created by the National Sedimentation Laboratory, Agricultural Research 

Service (U.S. Department of Agriculture) [3]. BSTEM was created specifically to 

investigate the erosion and stability of stream banks. 

1.2. FLOW RELEASE SCENARIOS 

Operating records covering a period from May 2001 through October 2001 were 

provided by Ameren UE for a previous erosion analysis completed in 2003 [2]. The 
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overall outflow hydrograph from the dam during this time period was divided into six 

outflow scenarios that represent the most common release patterns from the dam. Each 

of these scenarios is described in detail below: 

• Lake Destratified and Oxic Hypolimnia Period ("Hypolimnia") 

2 

The portion of the hydro graph representing this outflow scenario occurred 

between May 24 and June 11, and exemplifies the releases typically made from 

the dam in early summer when temperatures are rising, increasing the demand 

for hydroelectric power. This scenario will also be referred to as outflow 

scenario 1. 

• Extended High Flow Generation Period ("High Flow") 

The releases made during the time period from June 11 through July 7 are 

considered to be representative of typical releases of the High Flow period. 

High Flow outflows are not dependent on the time of year, rather they are 

caused by heavy rainfall within the Bagnell Dam drainage area and/or by flood 

releases from Harry S. Truman Dam, which is located upstream. The duration 

of this type of outflow scenario varies considerably, potentially lasting 

anywhere between one day and several weeks. This scenario will also be 

referred to as outflow scenario 2. 

• Typical Summer Generation Period ("Summer Generation") 

The portion of the hydrograph between July 7 and August 9 illustrates normal 

Summer Generation releases. During this period, electricity demands are large 

due to the high temperatures of summer, and considerable peaks in the 

demands occur throughout the day. Typically the peak electricity demands 

occur early in the morning, in the late afternoon and in the early evening. The 

size and timing of the outflows are dependent on not only electricity demand, 

but also on the amount of water available in the reservoir for release. The 

outflows range anywhere from the continuous minimum of 450 cubic feet per 

second (cfs) to 34,000 cfs. Normally, a release made during a peak demand 

time consists of an abrupt ramp up to meet the electricity need, followed by a 

period of fairly continuous releases which then taper off once the need has 

been met. This scenario will also be referred to as outflow scenario 3. 
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• Typical Summer Low Flow Period ("Summer Low Flow") 

The releases made during the period from August 9 to August 25 are typical of 

Summer Low Flow releases. During this time period, rainfall and subsequent 

runoff into Lake of the Ozarks is fairly low; thus releases are restricted in order 

to minimize water withdrawals from the lake to maintain a specific level for 

recreational purposes. During most ofthis period the outflow from the darn 

will be the minimum required outflow of 450 cfs; however, it is possible to see 

sporadic, short-term peaking releases. This scenario will also be referred to as 

outflow scenario 4. 

• Late Summer Transition Period ("Late Summer") 

The portion ofthe hydrograph between August 25 and September 18 

demonstrates typical releases during the Late Summer period. During this time 

there is generally an increase in rainfall and subsequent runoff into Lake of the 

Ozarks; however, temperatures and electricity demand remain high. The 

increase in rainfall allows for more liberal releases to be made to meet the 

electricity demand while maintaining the lake level necessary for recreational 

purposes. This scenario will also be referred to as outflow scenario 5. 

• Fall Oxygen Rebound Period ("Fall Rebound") 

During the fall months, temperatures tend to decrease slightly, lessening the 

electricity demand. At the same time, rainfall typically increases, providing 

adequate inflow to Lake of the Ozarks to maintain appropriate lake levels 

while allowing for peaking releases as necessary. The last portion of the 

hydrograph from September 18 through October 31 typifies the releases made 

during the Fall Rebound Period. This scenario will also be referred to as 

outflow scenario 6. 

The entire outflow hydrograph was used as input in an unsteady hydraulic model 

of the Osage River reach between Bagnell Darn and the Missouri River. 

1.3. PREVIOUS EROSION ANALYSIS 

A previous analysis (hereafter referred to as the 2003 erosion analysis) of the 

effects of hydropower generation releases on erosion and bank stability downstream of 

Bagnell Darn was completed in 2003. The subsequent report which provides the results 
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of this analysis is titled "Erosion Potential of the Osage River Downstream from Bagnell 

Dam" [2], and was one of the primary sources of data used for this study. 

4 

The 2003 erosion analysis quantified the effects of fluctuating discharges on the 

geometry and stability of the cross-sections using a program called Erosion Data Viewer 

(EDV). The EDV program determined the shear stress on the banks of the cross-sections, 

and the subsequent erosion rate for each soil type. The erosion rate for each time period 

was then multiplied by the duration of the time period to determine the total amount of 

erosion occurring during that time period. The total erosion potential (EP) for each bank 

over the course of each outflow scenario was calculated by summing all the erosion 

amounts for that scenario. The EPs for each scenario were compared in order to 

determine the effects of the various hydropower releases on the amount of erosion along 

the Osage River downstream from Bagnell Dam. 

1.4. DATA AVAILABILITY 

Station-elevation data for 13 cross-sections along the Osage River were available 

for use in this study. Cross-section geometry data was originally collected in 1997 for 

use in a HEC-2 hydraulic model of the river. This data was updated in 2003 to determine 

whether significant changes in cross-section geometry had occurred since the 1997 data 

was collected. The updated cross-section data was collected via bottom profiling and 

traditional surveying methods [2]. A map showing the location of the cross-sections used 

in the hydraulic model is provided in Appendix A, and the station-elevation data for each 

cross-section is provided in Appendix B. 

Soil borings were drilled at the stream bank of each of the 13 cross-section 

locations in order to determine the soil stratification to be used in the 2003 erosion 

analysis. The typical soil conditions found along the banks of the Osage River are tine

grained silts and clays along with fine to medium sands. Most of the bank material was 

normally-consolidated, and the most common bank stratigraphy encountered was a lower 

layer of loose sand and gravel with an upper layer comprised of silt and/or clay [2]. The 

soil distribution for each cross-section used for this erosion study is shown on the cross

sections provided in Appendix B. 

Wells were installed at four of the 13 cross-section locations for the purpose of 

monitoring groundwater fluctuations within the banks. Although some data was 
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collected at the observation wells, it was inadequate to provide detailed information 

regarding changes in the phreatic surface elevation as they relate to changes in the flow 

elevation in the channels; therefore the observation well data were omitted for the 

purposes of this study. 

As previously discussed, an actual release hydrograph was provided by Ameren 

UE for the period from May 2001 to October 200 1. The hydro graph provided outflow 

data from the dam every three hours. 

Flow elevations at each of the cross-sections during the outflow hydro graph were 

also available, as they had been determined in a previous hydraulic model of the Osage 

River. The hydraulic model is discussed in more detail in the following section. 

1.5. HYDRAULIC MODELS 

5 

The outflow hydrograph provided by Ameren UE is shown in Figure 1.1. The 

flows were originally used as input in a HEC-2 hydraulic model of the Osage River 

between Bagnell Dam and the Missouri River [4]. The HEC-2 model was developed by 

the US Army Corps of Engineers (USA CO E) Kansas City District Office, and is a one

dimensional, steady state model that uses Manning's equation to calculate the water 

surface elevation at defined cross-sections along the river. The cross-section data for this 

model was collected in 1997 [ 4]. 

45,000 -,---------·-·------------·-----------------------------------·-----·----------- -----·--------
40,000 -l------------------------·--·--·-- ---.. ---------- ___________ .. __________________________ - -------------------. --- ... 

35,000 +------t-1~1-t·--i--

~ 30,000 
i 25,000 
~ 20,000 ... d 15,000 

10,000 
5,000 

0 

5/19/2001 6/28/2001 8/7/2001 9/16/2001 10/26/2001 

Date 

Figure 1.1 Typical Outflow Hydrograph from Bagnell Dam 
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In 2001, the original HEC-2 model was incorporated into an unsteady hydraulic 

model developed by Mead & Hunt (Madison, WI). Although the HEC-2 model provided 

the basis for the 2001 model, the cross-section geometry was updated and the model was 

calibrated using known flow elevation data for varying dam outflows. The downstream 

boundary condition for the model was a rating curve at the confluence of the Osage River 

and the Missouri River [5]. 

The flow elevations determined in the 2001 unsteady hydraulic model were used 

as input in the BSTEM model for this study. The amount of bank and toe erosion at each 

cross-section was calculated, followed by a calculation of the FS for the eroded profile at 

various points throughout the various outflow scenarios. 

1.6. PURPOSE AND SCOPE 

The purpose of this study is to investigate the effects of the flow releases from 

Bagnell Dam on the erosion and stability of the banks along the Osage River downstream 

from the dam. Furthermore, the validity of using BSTEM to determine bank stability will 

be evaluated, and in this way provide a basis for future use of the program. 

The scope of this study involved a review of literature pertinent to bank stability 

analysis, collection and review of the available data and evaluation of the most 

appropriate way to use this data, and an analysis ofBSTEM that included the 

methodology incorporated into the program. In addition, comparisons between the 

results provided by BSTEM and those provided by another stability analysis program, 

SLOPE/w™, were made in order to determine whether the results from the simpler 

BSTEM program were comparable to those from other, more complex programs. The 

potential sources of uncertainty in this analysis were identified, and a sensitivity analysis 

performed to determine which input parameters had the greatest effect on the amount of 

erosion and the calculated FS for a given bank. Ultimately, various simulation scenarios 

were developed and analyzed using the bank stability program, and the results were 

examined to determine the potential effects of the varied flow releases from Bagnell Dam 

on bank stability. 

1.7. THESIS ORGANIZATION 

Section 2 of this thesis includes a review of literature pertaining to erosion, bank 

stability, methods of analyzing erosion and bank stability, various programs available to 
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calculate erosion and stability, as well as the parameters necessary for a stability analysis 

and the sensitivity of the analysis to variations in these parameters. Section 3 contains a 

thorough description of the bank stability model used for this analysis, the methodology 

and capabilities incorporated into the program, and the limitations of the program. 

Section 4 describes the modeling approach followed in the execution of this analysis. 

Section 5 contains a description of the model validation process, and Section 6 provides a 

discussion on the sensitivity of the results of the analysis to various input parameters. 

Section 7 includes the results from the various simulation scenarios, and discusses the 

implications of these results. Section 8 contains conclusions drawn from this analysis, 

and recommendations for further data collection and potential changes in operating 

procedures at the dam to minimize impacts on bank stability. 



www.manaraa.com

8 

2. REVIEW OF LITERATURE 

2.1. GENERAL 

Erosion is a naturally-occurring process that is common in most streams and 

rivers, and can cause changes to river geometry both in its channel patter and in its cross

section. Cross-section changes occur due to the deposition of sediment carried by the 

flow, which causes an increase in the invert elevation of the river, as well as changes in 

the geometry of the cross-section. The flow can also cause scour and incision to occur, 

resulting in a decrease in the invert elevation. Channel pattern changes are typically the 

result of shear stresses on the riverbanks that are in excess of the shear strength of the 

bank material, and may result in both shoreline erosion as well as lateral migration of the 

bank and mass failures [6]. The stability of the bank depends on several variables, 

including bank geometry, soil type and stratification, pore water pressure, confining 

pressure provided by the river, and vegetation present on the banks [ 6]. 

Streambank materials generally fall into one of two categories: cohesive and 

noncohesive. Cohesive materials contain large amounts of fine clay particles that tend to 

have strong chemical and electrochemical inter-particle bonds. Cohesive materials are 

typically more resistant to erosion than noncohesive materials. This is due in part to the 

inter-particle bonds, as well as the overall low permeability of the soil. Low permeability 

results in less seepage, subsurface flow, and piping which can all contribute to bank 

instability [7]. The accurate determination of the critical shear stress of a cohesive soil is 

a complex process, as it is dependent on numerous factors that are difficult to quantify, 

including clay and organic content, and the composition of the pore water [8]. Although 

less susceptible l:o erosion, cohesive materials are more likely to fail during rapid 

drawdown events, as more time is required for the phreatic surface to decrease than is 

necessary in noncohesive soils [7]. 

Noncohesive materials include sand, gravel and silt. These soils are more 

susceptible to erosion than cohesive soils because there are no inter-particle bonds which 

would help hold the material together, and seepage and piping due to subsurface flow 

exert forces within the bank towards the river. The flow of the river picks up individual 
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grains as it passes by noncohesive banks, resulting in the banks being eroded grain by 

gram. 

9 

The apparent cohesion of a soil can be increased if the bank is unsaturated, as this 

causes negative pore pressures, also referred to as matric suction. Matric suction 

increases the apparent cohesion of the soil as it is an additional force holding the soil 

together. Apparent cohesion depends not only on the type and structure of soils in a 

bank, but also on the depth of the phreatic surface within the bank [9]. 

Although erosion is naturally-occurring, human activities can significantly 

exacerbate the process, causing more erosion in a shorter period of time. These activities 

include: increasing the amount of runoff to a river due to an increase in impervious area 

in the contributing watershed as a result of land development, increasing the amount of 

sediment in runoff due to land development, increasing the amount of trash and other 

debris present in runoff, construction of dams, and, the focus of this thesis, releases made 

from dams to generate hydropower or regulate flood waters. 

2.2. CAUSES OF BANK FAILURE 

A streambank can be divided into three main sections for the purpose of 

evaluating failure mechanisms. The toe is located near the invert of the river, and is the 

section of the bank that is inundated most frequently, making it most susceptible to 

erosion. The floodplain is the section of the stream bank that is only inundated during 

periods of significant flood flows. Floodplains are typically much flatter than the 

remainder ofthe streambank. The main bank is the section between the toe and the 

floodplain, and is inundated when flows in a river are moderate due to flooding or dam 

releases. The phreatic surface in the main bank is often at or near the ground surface [7]. 

There are three main bank failure causes: hydraulic forces, geotechnical 

properties of the bank which lead to instability, and a combination of hydraulic forces 

and geotechnical properties. Erosion due to hydraulic forces typically occurs on banks 

comprised of noncohesive materials [7]. Toe erosion is most common at bends in 

streams and rivers, where flow is directed toward one of the banks and gravity causes the 

water to go into a rolling spiral with large velocities in the downward direction. These 

high velocities can cause the toe to be gradually eroded by a process known as fluvial 

entrainment, which occurs as the flow directly removes individual soil grains or soil 
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aggregates from banks and transports these particles/aggregates downstream. The 

amount and rate of erosion of a noncohesive soil depends on the grain size of the soil 

particles and their distribution within the bank, the shape ofthe particles, and the density 

ofthe particles [10]. 

Geotechnical instabilities cause bank failure when the downward forces within the 

stream bank are greater than the resisting strength of the soils within the bank. This 

typically occurs when the streambank is saturated and the flow elevation is rapidly 

decreasing. Under these conditions the excess moisture in the soil not only adds weight 

to the bank, but also causes the apparent cohesion of the soil to decrease due to an 

increase in pore water pressure and a reduction in matric suction. This imbalance of 

forces ultimately causes a portion of the upper soil mass to be displaced towards the toe 

of the bank, which is known as mass wasting [7]. 

The most common failure mechanism is a combination of hydraulic forces and 

geotechnical instabilities. This type of failure can occur after erosion of the bank toe has 

caused an increase in the overall bank height or angle, and geotechnical instabilities in 

the bank become such that mass wasting of the bank occurs [6]. Mass wasting typically 

occurs during the drawdown phase of a flood while the banks are still saturated, and the 

confining pressure that was supplied by the flood waters decreases significantly as the 

flow elevation decreases [1 0]. 

Climate-dependent processes occurring within the bank can also affect the amount 

and rate of erosion. As climate changes occur, the bank can be weakened due to 

processes such as frost heave and soil desiccation, which weaken the soil, making it more 

prone to erosion during a large flow event. They can also result in tension cracks, which 

further weaken the bank, making mass wasting more likely [ 1 0]. 

2.3. FAILURE MECHANISMS 

Failure mechanisms typically fall into one of four main categories: planar or slab

type failures, rotational failures, cantilever failures and piping failures [ 6]. The failure 

mechanism depends on the geometry as well as the soil type and stratification of the 

stream bank. 

Planar or slab-type failures are the most common failure mechanism, and steep 

stream banks are most susceptible to this type of failure [11 ]. Steep banks generally fail 
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along a planar slip surface, and the failed block slides toward the toe of the bank before 

toppling into the channel [6]. It is common for deep tension cracks to appear before a 

planar failure occurs [ 12]. An example of a planar or slab-type failure is provided in 

Figure 2.1. 

p , 

, "", " planar 
, " failure surface , 

Figure 2.1 Example of Planar Bank Failure [3] 
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Rotational failures occur along a slightly curved slip surface, and are prevalent in 

streambanks with large bank heights and mild slopes. Generally a bank with a bank 

angle of less than 60 degrees is classified as mildly-sloped. The appearance of vertical 

tension cracks prior to a rotational failure is common. The failure block typically rotates 

toward the bank while it slides downward [6,12]. An example of a rotational failure is 

provided in Figure 2.2. 

\ rotational 
failure surface 

Figure 2.2 Example ofRotational Bank Failure [3] 
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Cantilever failures are typically seen in streambanks that are composed of a layer 

of noncohesive material underlying an upper layer of cohesive material. Cantilever, or 

overhanging, banks form when the bank toe material is noncohesive and is significantly 

eroded, resulting in a loss of the material that had been supporting the cohesive layer. 

This loss of material is also referred to as undercutting. When the magnitude of the 

downward force of gravity on the overhanging bank exceeds its strength, a portion of the 

bank will break off and fall downward into the eroded area [7]. An example of a 

cantilever failure is provided in Figure 2.3. 

overhang 
generated on 
upper bank 

preferential 
retreat of 
erodible 
basal layer 

failure surface 

Figure 2.3 Example of Cantilever Bank Failure [3] 

A piping failure may occur when the streambank is saturated, and water 

exfiltrates from the bank into the channel. A piping condition exists when the water 

carries with it soil particles as it flows toward the river. lfthe exfiltrating flow is 

significant enough and removes a sufficient amount of soil, the bank may fail [7] . 

Ultimately, failure of a streambank occurs when the driving forces downward are 

greater than resisting forces within the bank. The various forces acting on the failure 

block include its weight, the weight of the water in the channel acting downward on the 

block, the hydrostatic force applied by the water in the channel, the hydrostatic force of 

water in the tension cracks, if they exist, the force of water exfiltrating from the bank, the 

shear force resisting all downward forces, and the normal force along the failure surface 

[6]. 
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2.4. PORE PRESSURE 

One of the primary factors affecting bank stability is the fluctuation of the 

groundwater level and corresponding pore water pressure within the streambank. When a 

bank is saturated, positive pore water pressures cause a reduction in the shear strength of 

the bank, while simultaneously increasing the weight of the bank, causing a larger 

downward force to be applied to the failure block. In addition, seepage forces of water 

exfiltrating from the soil cause further destabilization of the bank. If tension cracks exist 

and water is present within these cracks, this also decreases the overall stability of the 

bank due to the forces exerted by the water [8]. 

While saturated banks tend to cause more bank instability, the absence of water in 

the upper portion of a bank actually has a stabilizing effect on the bank. When the 

phreatic surface is located below the ground surface, the upper layer of bank material is 

unsaturated, and negative pore water pressure exists within the unsaturated material. 

Negative pore water pressure is also referred to as matric suction due to the increase it 

causes in the apparent cohesion of the bank material. As the apparent cohesion increases, 

the shear strength ofthe bank to resist failure also increases [9,13]. 

The fluctuation of pore water pressures within a bank is an extremely complex 

process that is often difficult to predict; however, it has a large impact on the stability of a 

bank during and after a flow event, which are the periods during which the bank is least 

stable [14]. When evaluating the stability of a streambank throughout a flood event, it is 

important to consider the relationship between pore water pressure and the variations of 

water surface elevation within the channel during a flood hydrograph. On the rising limb 

of the hydro graph, when flows are increasing within the channel, the phreatic surface 

within the bank increases as water from the channel infiltrates into the soil. This causes 

an increase in pore water pressures in the bank, and a subsequent decrease in apparent 

cohesion and shear strength of the soil as the phreatic surface moves toward the ground 

surface. Although the pore water pressures increase during the rising limb of the 

hydrograph, this period is typically the most stable due to the increase in confining 

pressure that occurs as the water level in the channel rises. 

Once the flood peak has passed, the drawdown phase of the hydro graph occurs, 

resulting in a fairly rapid decrease in confining pressure from the river. The elevation of 



www.manaraa.com

14 

the phreatic surface does not decrease as quickly as the elevation of the water within the 

channel; thus a less stable condition develops in which high pore water pressures within 

the bank are coupled with low confining pressures from the river. If the instability of the 

bank is sufficient, failure may occur during this phase of the flood hydrograph. 

It has been widely accepted that the highest probability of bank failure occurs 

after the peak of the flood hydro graph has passed, and the water level in the channel is 

decreasing [ 13]. The difficulty in determining the actual likelihood and timing of bank 

failure lies in the complexity of the water table drawdown process, and the relative 

inability to quantitatively define the relationship between the elevation of the phreatic 

surface (pore water pressures) and flow elevation (confining pressure of river) in the 

channel, due largely to difficulties related to monitoring these parameters [ 14]. The issue 

is further complicated by the fact that the depth to the phreatic surface is not influenced 

only by the flow elevation within the channel, but also varies with seasonal fluctuations 

of rainfall and evapotranspiration [ 13]. 

The relationship between the elevation of the phreatic surface within the bank and 

water surface elevation in the channel is particularly important in regulated rivers, where 

high flows are generally sustained for long periods of time, followed by a rapid decrease 

in flow [9]. The extended duration of high flows generally results in near or complete 

saturation of the banks, maximizing pore water pressures. When the flow is abruptly 

decreased, the water surface elevation and subsequently the confining pressure of the 

river decrease quickly. The phreatic surface elevation decreases at a significantly slower 

rate than the water surface elevation in the stream due to the relatively slow movement of 

water through the soil, establishing favorable conditions for bank failure [9]. 

The uncertainties involved in determining pore water pressures within a 

streambank were also discussed in the 2003 erosion analysis, which stated that it is "very 

difficult or nearly impossible to define a typical groundwater flow pattern for the 

different stages of the river" [5]. Although it is possible to make generalizations 

regarding the rate of drawdown of the water table in various soil types, it is difficult to 

quantify these generalizations. The report also pointed out that most of the uncertainties 

related to modeling bank stability during a flood event occur during the drawdown phase 

of the flood, when pore pressures have the largest impact on stability but are difficult to 
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accurately enumerate [5]. It is because of these uncertainties that many streambank 

stability analyses assume that the phreatic surface remains at the ground elevation 

throughout the entire flood hydrograph, as this is the most conservative assumption. 

2.5. VEGETATION EFFECT ON STABILITY 
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The presence or lack of vegetation on stream banks, as well as the type of 

vegetation, have an effect on stability. The impact of vegetation is difficult to quantify as 

it is a complex issue that varies from streambank to streambank. In most cases, 

vegetation is considered to have a positive effect on streambank stability; however, it is 

possible for it to have a negative impact under certain conditions [ 6]. 

Vegetation intercepts some precipitation, reducing the amount of water that 

infiltrates into the ground, as well as reducing displacement of soil particles due to the 

impact of the precipitation [8]. In addition, vegetation roots have significant tensile 

strength and provide reinforcement to the soil, absorbing a portion of the total shear stress 

that is applied to the soil. In addition, the phreatic surface in a vegetated streambank is 

generally lower than in non-vegetated banks as the vegetation intercepts some rainfall, 

and the roots also remove moisture from the soils [6]. It is estimated that the critical 

shear stress of a stream bank may increase by up to a factor of three when sufficient 

vegetation is present [ 11]. 

Vegetation also decreases temperature fluctuations in the soil, which can help 

prevent or reduce frost heave and desiccation that are known to contribute to bank 

instability. It also causes the roughness of the banks to increase, which directs flow more 

toward the center of the channel, decreasing shear stresses on the banks [8]. 

Vegetation may also, however, contribute to instability of a bank if the roots 

create seepage paths. Seepage paths increase the amount of water in the soil, increasing 

pore water pressure, and potentially resulting in piping [6]. 

2.6. OVERVIEW OF STABILITY ANALYSIS 

There are various methods of evaluating bank stability in a river, the most 

common of which is the limit equilibrium method. This method calculates a FS for a 

stream bank under the specified conditions. The FS is a ratio of the resisting forces of a 

streambank to the driving downward forces applied to the bank [6]. This is equivalent to 
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the factor by which the shear strength of the bank must be reduced in order for the 

resisting and driving forces to be in equilibrium [6]. 
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Many studies that attempt to determine bank stability simplify the calculations by 

assuming only planar failures are possible, and by avoiding the determination of a 

relationship between pore water pressures and confining pressures. In these studies two 

soil conditions are typically evaluated: dry conditions, where the phreatic surface is 

assumed to be at or slightly above the flow elevation in the channel, and worst case 

conditions, which assumes total saturation of the bank followed by a rapid draw down of 

the water level in the channel [13]. These assumptions and simplifications are made 

because the use of traditional limit equilibrium methods to determine bank stability is 

limited due to the difficulties in determining pore water pressures within the bank [12]. 

Other studies have attempted to estimate the fluctuations of the pore water 

pressures in a bank during a flood event. Rinaldi et al. (2004) determined that it was 

necessary to determine the effects of the flow release scenarios on pore water pressures 

and erosion of the bank toe in order to accurately calculate the stability of the bank [ 13]. 

This was accomplished by coupling two models. First, a two-dimensional finite element 

hydrologic model called GeoSlope SEEP/W™ was used to simulate water movement 

through the bank and the associated pore pressures. This data was then input into a bank 

stability model to determine the FS. When a detailed seepage analysis is performed as in 

this study, it is necessary to accurately define initial soil moisture conditions. This study 

used average spring water table elevations for the area of interest, and included a small 

amount of evaporation in order to establish reasonable initial moisture conditions [9]. 

Although this approach likely provides for a more realistic stability analysis than in those 

analyses that make general assumptions regarding pore water pressures, it also requires 

significantly more data before the analysis can begin. In addition, with the increase in 

data necessary to run a model comes an increase in the uncertainties associated with the 

data, which could lead to a decrease in the confidence of the accuracy of the results. 

In the absence of sufficient groundwater table elevation data, the most common 

approach to a stability analysis is to assume a rapid drawdown scenario, which is 

common in rivers with fluctuating flows [15]. This is also the most conservative method 

of analyzing bank stability, as pore water pressures are assumed to be maximized. 
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3. BANK STABILITY AND TOE EROSION MODEL (BSTEM) DESCRIPTION 

3.1. GENERAL 

The calculations of the amount of erosion and FS for all outflow scenarios 

evaluated during the course of this study were carried out with version 5.2 ofBSTEM. 

The user must enter several pieces of information describing the stream bank of interest 

before the model can be run. Station-elevation data describing the geometry of the cross

section of interest must be provided, as well as the elevation of the top of the bank toe. 

The user must also enter the thicknesses of and the materials comprising the various soil 

layers. The material of each layer may be entered in one of two ways: the type of 

material may be selected from a drop-down menu of materials preset within the program, 

or the parameters describing the material may be entered numerically. If the material is 

selected from the drop-down menu, the program assumes typical values for each of the 

parameters. The parameters used to describe the soil include the friction angle (q>' in 

degrees), the cohesion (c' in kPa), the saturated unit weight (yin kN!m\ the critical 

shear stress ('tc in Pa), the erodibility coefficient (kin cm3/Ns), and an angle that 

describes the increase in shear strength due to matric suction ( q> bin degrees). 

Once the cross-section properties have been entered into the model, it is necessary 

to indicate the type of vegetation and bank and toe protection, if there is any present. The 

depth to the phreatic surface must also be provided to obtain the pore pressures within the 

bank, or the user has the option to manually specify pore pressures for each layer. Other 

input requirements include the length and slope of the reach in which the cross-section is 

located, as well as the elevation of flow within the cross-section and the duration the 

specified flow elevation is maintained. 

The program then uses all of the provided data to calculate the amount of toe 

erosion that occurs and the minimum FS for the given conditions. 

3.2. METHODOLOGY 

BSTEM is capable of evaluating the erosive effects of flow through a cross

section by calculating the amount of material eroded away due to hydraulic forces (shear 

stresses) of the flow. In addition, it can determine the stability of the bank via the 

calculation of a FS for the specified scenario assuming a planar failure of the soil bank. It 



www.manaraa.com

is also possible to use the modified cross-section geometry determined through the toe 

erosion calculations in the bank stability analysis. By using this option the cumulative 

effects of erosion and undercutting of the cross-section on the FS throughout a flood 

hydrograph can be computed [16]. 
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The amount of eroded material is calculated by comparing the critical shear stress 

of the soil with the shear stress applied by the streamflow. This is determined through 

the use of the following equation: 

to= YwRS (1) 

where to is the calculated average boundary shear stress exerted by the flow in Pascals 

(Pa), 'Yw is the unit weight of water equal to 9.801 kN/m3, R is the hydraulic radius ofthe 

channel cross-section for the given water surface elevation in meters (m), and Sis the 

average channel gradient in m/m. The hydraulic radius of a channel is typically 

considered to be equal to the water depth in channels that are considered wide. Figure 

3.1 illustrates how the shear stress is distributed in BSTEM [16]. 

The shear strength of the soil is determined using one oftwo criteria, depending 

on whether the bank is saturated or unsaturated. In saturated soils, the Mohr-Coulomb 

criterion is used to calculate the shear strength according to the following equation: 

tr = c' +(a- ~w) tan(q>') (2) 

where tr is the shear strength of the soil, c' is the effective cohesion of the soil, a is the 

normal stress applied to the boundary, ~w is the pore water pressure, and q>' is the 

effective angle of internal friction. q>' is measured in degrees, and all other variables are 

measured in kPa [3]. 

In the case of unsaturated soils where negative pore pressures exist, the Fredlund 

et al. (1978) criterion is used to determine the shear strength of the soil by the equation 

[8]: 

t = c' +(a- aa) tan(q>') + (ua- Uw) tan(q> b) (3) 
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Figure 3.1 Example of Shear Stress Distribution in BSTEM [3] 
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In this equation, 't is the shear strength of the soil, c' is the effective cohesion of the soil, 

cr is the normal stress on the failure block, Ua is the pore air pressure, <p' is the friction 

angle in terms of effective stress, Uw is the pore water pressure, and <p b is the angle that 

represents the increase in apparent cohesion due to negative pore pressures. The angles 

are measured in degrees in this equation, and all other variables are measured in kPa 

[8,13]. 

The longer the given flow elevation is sustained within a cross-section, the greater 

the amount of material that will be eroded. An area of eroded material is determined for 

each cross-section; this can be converted to a volume of eroded material by multiplying 

by the reach length. Once the eroded profile for the given flow elevation and duration 

has been determined, the FS for a planar failure of the bank is computed using the limit 

equilibrium method. 

The pore pressures within a bank are a crucial factor in the determination of the 

FS. As discussed previously, positive and negative pore pressures play a large role in the 

overall stability of a streambank. In BSTEM, if pore pressures are not defined for each 
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soil layer and the user simply provides a depth to the phreatic surface, pore pressures are 

calculated for each layer. The pore pressures below the phreatic surface are calculated 

assuming hydrostatic conditions, thus the pore pressure is equal to the unit weight of 

water multiplied by the head of the water table above the centerline of each soil layer. 

Pore pressures above the water table are calculated the same way; however the pore 

pressures are negative rather than positive, and represent matric suction. 

The program has a built-in algorithm that iterates over multiple failure scenarios 

to determine the scenario that results in the lowest FS. The iterations cover many 

different combinations of shear emergence elevations and shear angles. The shear 

emergence elevation is the elevation on the bank where the failure plane will intersect the 

cross-section face. The shear angle is the angle of the failure plane. Figure 3.2 illustrates 

the shear emergence elevation and angle. 
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Figure 3.2 Figure Showing Shear Emergence Elevation and Shear Surface Angle [3] 
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If an analysis results in a FS less than 1.0, the bank is considered unstable. If the 

FS is between 1.0 and 1.3, the bank is considered conditionally stable. This is because, 

although theoretically a FS of greater than 1.0 should indicate that the shear strength of 

the soil is exactly equal to the shear stresses exerted on the failure block, and thus the 

bank should not fail, there is inherent uncertainty and error in the calculation of the FS. 

A FS of greater than 1.3 indicates that the bank is considered stable, and should not fail 

under the given conditions. 

3.3. MODEL CAPABILITIES AND LIMITATIONS 

BSTEM is capable of evaluating varying and complex bank geometries composed 

of up to five different soil layers, as well as the bank toe. With respect to bank toe 

erosion, BSTEM is capable of calculating the shear stresses exerted by the flow on the 

bank toe and the resulting erosion [3]. Each of the five soil layers may have completely 

separate properties from the other layers, which results in the ability of the user to 

evaluate composite banks with soils of varying strengths. The model is also able to 

incorporate the effects of positive and negative pore water pressures within the bank on 

the stability of the bank, as well as the confining pressure provided by the flow in the 

channel. One optional feature of the model is the ability to model the reinforcement 

effects of vegetation on the stability of the bank. In addition, the user is also able to add 

man-made reinforcement to the bank and bank toe if appropriate [3]. 

Although BSTEM is able to provide a general approximation of the stability of 

various bank stratigraphies given various conditions, there are some model limitations 

that should be pointed out. One of the primary limitations of the model is that there is no 

way to determine a relationship between the elevation of the phreatic surface and the 

water surface elevation in the channel. The complex processes that occur as water levels 

rise and fall within a channel, and water infiltrates and exfiltrates into and out of the 

bank, are extremely difficult to model. Some stability analysis programs include a 

seepage analysis that attempts to define this relationship. In order to account for pore 

pressures in BSTEM, the user must manually enter either the phreatic surface elevation or 

pore pressures in the different layers. This also means that the user must attempt to 

determine the location of the phreatic surface and its fluctuations during a flood event. 

This results in a significant amount of uncertainty in the stability analysis. 
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BSTEM also assumes that the water table is horizontal within a particular bank, 

when in fact it varies across the bank depending on the proximity to the river. Figure 3.2 

above shows how the assumed horizontal water table differs from the actual water table. 

One additional limitation of the model is that it only assumes planar or cantilever 

failures of a bank when carrying out the stability analysis. This means that rotational 

failures and piping failures cannot be considered while running this model. The 

assumption that failures are either planar or cantilever failures is not unrealistic, as planar 

failures are the most common form of stream bank failure encountered. 

A final limitation of the model is that it is unable to automatically provide an 

analysis of bank stability throughout a hydrograph. This limitation can be overcome by 

the user performing numerous calculations throughout each flood hydro graph. The 

calculations must be cyclical in that the user must perform an erosion analysis for one 

water surface elevation, export the eroded profile for use in the stability analysis for that 

same water surface elevation, and then repeat the process for all remaining water surface 

elevations of the hydro graph. 
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4. MODELING APPROACH 

The modeling approach consisted of several steps, the first of which involved 

setting up a separate BSTEM model for each of the cross-sections. For each cross

section the bank geometry was specified, as well as the thickness and properties of the 

various soil layers. At that point it was possible to begin calculating the erosion amounts 

and FSs for each cross-section, and their fluctuations throughout the various outflow 

scenarios. 

For reasons previously discussed, it was necessary to make some assumptions 

regarding the elevation and fluctuation of the phreatic surface in the streambank 

throughout each flow scenario. The "worst case" scenario was evaluated for all cross

sections, and assumed that the phreatic surface did not fluctuate, but remained at the top 

of the ground surface throughout the entire flood event. This scenario is most critical in 

terms of bank stability because this is the case in which pore water pressures in the bank 

are maximized. 

The "best case" scenario assumed that the water table fluctuated slightly 

throughout the flood event. For this scenario, it was assumed that if the flow elevation in 

the channel increased, the phreatic surface elevation increased accordingly so that it was 

equal to the water surface elevation for each time step; however, it decreased at a rate 

equal to approximately one-tenth the rate that the flow elevation in the channel decreased. 

This scenario was considered the "best case" scenario as the bank is not assumed to be 

completely saturated at any point throughout the hydrographs, thus pore pressures will 

never be maximized. Due to capillary action and infiltration from precipitation, the water 

table in a bank typically is higher than the elevation of the water surface in the channel. 

The purpose of evaluating both of these drawdown scenarios was to determine how 

erosion and the FS would be affected by the theoretical maximum range of water table 

elevations that could realistically occur within a given bank. 

The results of the 2001 hydrodynamic model provided water surface elevations at 

each cross-section for each outflow hydrograph at three-hour time intervals. Due to the 

nature of BSTEM, which requires manual entry of each individual water surface 

elevation and phreatic surface elevation, and the exceptionally large number of data 
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points for each cross-section, the erosion and FS were calculated every 12 or 24 hours 

rather than every three hours. This allowed for the overall effects of the flow fluctuations 

to be accounted for, while reducing the amount of data points to a more manageable 

number. 

The total amount of erosion and average erosion rate for all six outflow scenarios 

at each cross-section were determined. Upop completion of these calculations, the three 

outflow hydrographs that caused the greatest amount of erosion and average erosion rates 

were identified. The FSs throughout these three hydrographs were then evaluated at all 

of the cross-sections. The reason for this simplification was also due to the time

consuming nature of data entry in the BSTEM model. Rather than spend an excessive 

amount of time evaluating all six hydro graphs at all the cross-sections, the three most 

critical hydrographs were evaluated at each cross-section. This allowed for a more 

thorough investigation ofthe effects of flow fluctuations on erosion and bank stability. 

One cross-section, cross-section 2, was selected for a more in-depth analysis. At this 

cross-section, all six outflow hydrographs were evaluated, stability analyses omitting toe 

erosion were completed, and various groundwater drawdown assumptions were 

considered. 

It was assumed in the calculations for each water surface elevation that the flow 

elevation was sustained within the cross-section for 12 or 24 hours, depending on which 

time step was selected for the given scenario. This assumption coupled with all of the 

other data already entered into the program allowed for the calculation of the average 

applied boundary shear stress, and determined the eroded area of the bank and toe for 

each time step. The eroded cross-section was then exported into the input geometry and 

this new cross-section was used to determine the FS for the given water surface elevation. 

This iterative process was completed for every water surface elevation throughout each of 

the outflow hydrograph scenarios evaluated. 

Each outflow scenario was assumed to be an independent event; thus the original 

cross-section as reported in the 2003 erosion analysis was assumed to be intact at the 

beginning of each outflow scenario. The purpose of this was to determine the individual 

effects of each flow scenario on the amount and rate of erosion and the stability of the 

cross-sections. Also, since the flow patterns are cyclical, there was no way to determine 
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which flow scenario should be evaluated first if the eroded cross-sections were to be 

carried over for the subsequent flow pattern. 
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The erosion area and FS resulting from each water surface elevation during each 

outflow scenario were plotted on a graph with the appropriate outflow pattern to 

determine the relationship, if any, that existed between outflow and the FS. The total 

amount of eroded material during eac~ outflow scenario for each cross-section was also 

determined and plotted to demonstrate the outflow pattern that resulted in the most 

erosion. 

Two additional analyses were also completed to provide additional data regarding 

the effect on the banks of the outflow scenarios. The first was completed to determine 

whether the slope of the outflow hydro graph had a significant impact on the stability of 

the bank. In other words, would a decrease in the time step of the outflow hydro graph 

result in a measurable increase or decrease in the erosion amount and FS? This 

determination was made by running additional analyses for cross-section 2 for one 

outflow hydro graph in which the time step was decreased from 24 hours to 12, 6 and 3 

hours. 

The second additional analysis was completed to determine whether the omission 

of toe erosion would significantly affect the stability analysis. In this portion of the 

study, a strictly stability analysis was performed for all of the cross-sections; no toe 

erosion was assumed to occur during the outflow hydro graphs. 

The results of these analyses could potentially be used in the future to recommend 

outflow scenarios from Bagnell Dam that would result in less bank erosion and instability 

than current typical outflow scenarios. 
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5. MODEL VALIDATION 

5.1. GENERAL 

The model used for this study, BSTEM, makes many simplifying assumptions in 

the calculation of the FS. In an effort to determine whether these assumptions result in 

reliable FSs, input data from a stability analysis completed for a streambank of the Sieve 

River in Tuscany (Italy) was entered into BSTEM, and the results calculated therein were 

compared to those reported in Rinaldi et al. (2004), "Monitoring and Modelling of Pore 

Water Pressure Changes and Riverbank Stability During Flow Events" [13]. 

The results of Rinaldi et al. (2004) were selected for use in the validation process 

for a number of reasons. The primary reason for this selection was that the stability 

analysis was determined through a limit equilibrium method, and bank failures were 

limited to planar failures. These are consistent with the analysis methods of BSTEM, 

which would remove the possibility of discrepancies in results due to methodology 

differences. Also, the study incorporated a seepage analysis, allowing for changes in 

pore pressures within the bank to be approximated and more accurately represented in the 

model. In addition, the model results were compared with actual field data to determine 

their accuracy, verifying that the model used produces reasonably accurate results. 

5.2. STUDY OVERVIEW 

The focus of the study was the Sieve River, which is a naturally-eroding tributary 

of the Arno River located in Tuscany, central Italy. Monitoring took place from February 

1996 through February 2000 to collect data regarding erosion and bank instability along 

the Sieve River, and how these related to changes in river flows. The monitoring also 

included the use of piezometers and tensiometers to determine the groundwater table 

elevation and matric suction profile in the bank. The main purpose of this study was to 

determine how pore water pressures vary within the stream bank, and their corresponding 

effects on the overall stability of the bank. A secondary objective included demonstrating 

the use of a coupled modeling system which incorporates both a seepage analysis to 

determine pore pressures, and a limit equilibrium analysis for bank stability. One final 

objective was to evaluate the response of the FS of the bank to various flow events. 
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The pore water pressures were calculated using a program called SEEP/w™, 

which uses Darcy's Law to determine the velocity of groundwater flow within a saturated 

streambank, and estimates hydraulic conductivity ofunsaturated banks from the water 

content and pore water pressure in the soil. The estimations of groundwater flow 

velocities coupled with the principle of conservation of mass are then used to perform a 

two-dimensional, finite element seepage analysis. 

The results of the seepage analysis were used as input in the stability analysis, 

which was completed using the software SLOPE/w™. This was an iterative process, 

requiring that the seepage analysis be completed for each time step, and this data entered 

into the stability analysis at each time step. Data from the piezometers and tensiometers 

installed along the bank was used to define the initial groundwater conditions and matric 

suction profile in SEEP/w™ prior to the beginning of a flow event. In cases where the 

flow event occurred prior to the installation of the piezometers and tensiometers, the 

initial water table elevation was assumed to be equal to the water surface elevation within 

the channel prior. to the beginning of the flow event. 

The primary limitation of the stability analysis in Rinaldi et al. (2004) is that it did 

not account for bank toe erosion and undercutting which contribute greatly to bank 

instability. The geometry of the bank was assumed to remain intact throughout the entire 

simulation, and only mass failures of the upper bank were considered as failure 

mechanisms. Based on the field observations, mass failure was the primary failure 

mechanism along the Sieve River; thus this limitation was not considered to affect the 

accuracy of the results. 

5.3. RIVERBANK PROPERTIES 

Detailed data regarding the properties of the riverbank used in the analysis was 

provided. This data was used unchanged as input into BSTEM for the model validation. 

Figure 5.1 is an illustration of the stratigraphy of the bank as provided in Rinaldi et al. 

(2004). 

The riverbank was divided into five distinct soil layers, a through e, each with a 

corresponding description and geotechnical properties. Layer a is 1.2 m thick and is 

described as massive silty fine sand. Layer b is 0. 75 m thick, and consists of sand in the 

upper portion of the layer, and cobbles in the remaining lower portion. Layer c is 1.15 m 
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Figure 5.1 Bank Stratigraphy [13] 

thick, and is comprised of silty sand, with silt sublayers throughout the upper and central 

portions of the layer. Layer d is a 2.0 m thick layer of packed and imbricated sand, 

gravel and cobbles. Layer e is the bank toe, and the soil type in this layer is described as 

loosely packed gravel and cobbles. 

The geotechnical properties for layers a through c were determined through a 

series of triaxial tests and borehole shear tests. The values reported for these layers are 

provided in Table 5.1, and were used unchanged in the BSTEM model. In cases where 

the triaxial tests and borehole shear tests resulted in slightly different parameter values, 

the values were averaged before being used as input. 

Table 5.1 Geotechnical Properties 

<p' c' y (j>b 

Layer (de_grees) (kPa) (kN/m3) (degrees) 

a 34 2 17.7 28 

b 37.5 1 18.3 32 

c 34.5 2 17.8 26 
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Exact geotechnical properties were not provided for layers d and e. For these 

layers, the default parameters in BSTEM for the specified soil type were used. Based on 

the soil descriptions, a range of parameter values was possible for layers d and e. Due to 

a lack of more specific data, the more conservative parameter values were adopted. 

5.4. ADDITIONAL INPUT DATA 

A plot was provided in Rinaldi et al. (2004) that depicted the variations in the FS 

as compared to the water table elevation and the elevation of the water surface in the 

channel. Twenty-four time steps were used to evaluate a flood event that lasted from 

noon on December 13, 1996 through 6:00pm on December 17. Numerical values of the 

FS for each time step were provided in the paper, but only a graphical representation of 

the water table elevations and river water surface elevations were available. Estimates of 

these parameters at each time step were made from the plotted data. The mean channel 

gradient was also given in the paper as 0.003; this value was used in the BSTEM model. 

5.5. RESULTS COMPARISON 

The FS was calculated in BSTEM at each of the 24 time steps, and the results 

were plotted on a graph alongside the FSs reported in Rinaldi et al. (2004). Figure 5.2 

below shows the fluctuations of the FSs and how they compare with one another. 

The FSs calculated in BSTEM and their variations throughout the flood event 

were comparable to those reported in Rinaldi et al. (2004), indicating that BSTEM 

provides very similar results to Slope\w™. The maximum percentage difference between 

the Rinaldi FSs and those calculated in BSTEM was 17.2 %; however, the average 

percentage difference was only 6.3 %. The differences in the results could potentially be 

attributed to the error incurred during the estimation of water table elevation and water 

surface elevation from the figure in the report. Another potential source of the 

discrepancies in the results could be related to a modeling component that differs 

between the models. For the model used in Rinaldi et al. (2004), the actual pore 

pressures in each soil layer obtained through the seepage analysis were input into the 

stability analysis. In BSTEM, the phreatic surface elevation was entered and the pore 

pressures were calculated by the program. BSTEM assumes the pore pressures vary 

linearly with bank height, whereas the pore pressures obtained in the seepage analysis 
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likely were not distributed linearly. This slight difference could cause the discrepancies 

seen in the comparative plot above. 

The general shapes of the plots are also very similar, meaning that the effects of 

the fluctuations in water table elevation and water surface elevation are represented fairly 

consistently in both stability models. In addition, BSTEM does not appear to consistently 

over or underestimate the FS. 

Overall, the results calculated during the validation process indicated that BSTEM 

is capable of providing estimates of FSs for a composite bank throughout a flood event 

comparable to those calculated in other stability models. The accuracy of the results, 

however, is still dependent on the quality of field data used as input to the model. 

5.6. STUDY CONCLUSIONS 

Based on the results of the simulations, Rinaldi et al. (2004) made several 

observations regarding bank stability during flood events. One such observation was that 
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hydrographs with only one distinct peak, rather than numerous fluctuations in flow 

throughout the flood event, resulted in greater bank stability. An additional observation 

was that it is not necessary for a bank to be completely saturated for a failure to be 

triggered. As pore pressures began to increase, and the apparent cohesion of the bank to 

decrease, the FS was sometimes low enough to indicate that a mass failure was possible, 

even if the bank was not fully saturated. This scenario was most common in stream banks 

composed of mostly silts and sands. 
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6. SENSITIVITY ANALYSIS 

6.1. GENERAL 

It is very difficult to accurately characterize the geotechnical properties of a 

composite bank and how they vary over the bank height; however, defining parameters 

for each of the bank materials is an integral step in using BSTEM to perform a stability 

analysis. The appropriate values for each geotechnical parameter vary according to soil 

type, soil compaction, amount of organic material mixed into the soil, as well as other 

factors [10]. It is important to accurately characterize the various soil strata within a bank 

because the results of the BSTEM erosion calculations and stability analysis are only as 

accurate as the available input data. 

A sensitivity analysis was performed to determine the quantitative effect of 

varying parameter values on the resulting erosion amounts and FS. The purpose of this 

was to determine which parameters had the greatest impact on the results of the analyses, 

and to thus provide a basis for further geotechnical investigations if it is desired that the 

BSTEM model of the Osage River to be further refined. 

6.2. AVAILABLE DATA 

The geotechnical data collected for the 2003 erosion analysis included detailed 

boring logs at each of the cross-sections, which provided an accurate description of the 

soil types at various depths within the bank; however, no geotechnical parameters 

necessary for use in BSTEM were directly measured. Because of this it was necessary to 

assume reasonable values for the parameters for each cross-section. There is an option in 

BSTEM where the user selects a general description of each soil layer, and typical values 

for each of the parameters are used in the erosion calculations and stability analyses. Due 

to the lack of more specific data, this option was chosen to describe the bank materials. 

6.3. APPROACH 

Cross-section 2 was selected for use in the sensitivity analysis because it has a 

relatively mild bank angle, and provided reasonable results for all of the outflow 

scenarios. In addition, several types of soil were represented in this cross-section, 

including stiff clay, soft clay, silt and angular sand. The bank geometry and stratigraphy 

of cross-section 2 are depicted in Figure 6.1 below. 
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The High Flow scenario was chosen as the outflow scenario to be used in the 

sensitivity analysis. This outflow hydrograph was selected because it resulted in a large 

range of water surface elevations at cross-section 2, and also contained periods of rapid 

drawdown and rising water surface elevations. 
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Twenty-four individual sensitivity analyses were completed, each using default 

values for all of the parameters except for one. The parameters were varied individually 

by both increasing and decreasing the default value by 10 and 20 %. This is similar to 

the sensitivity analysis completed in Jha et al. (2005 ), which changed the base parameter 

values by 5 and 10 percent to determine the effect on the stability analysis outcome [ 11]. 

The parameters that were adjusted for this sensitivity analysis included q:>', c', y, 'tc, k, and 

q:> b, which were defined in Section 3 .1. Table 6.1 contains a list of the various sensitivity 

analyses performed and a description of the parameter and percentage increase or 

decrease used in each analysis. 

The amount of erosion and stability of cross-section 2 were determined for each 

24-hour time step of the High Flow scenario. This entire process was completed for each 
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Table 6.1 Description of Various Sensitivity Analyses 

Sensitivity Sensitivity 
Analysis Description Analysis Description 

1 q>' decreased by 1 0% 13 q>' decreased by 20% 

2 q>' increased by 10% 14 q>' increased by 20% 

3 c' decreased by 1 0% 15 c' decreased by 20% 

4 c' increased by 10% 16 c' increased by 20% 

5 y decreased by 1 0% 17 y decreased by 20% 

6 y increased by 1 0% 18 y increased by 20% 

7 <j>b decreased by 1 0% 19 <j>b decreased by 1 0% 

8 <j>b increased by 1 0% 20 <j>b increased by 1 0% 

9 'tc decreased by 1 0% 21 'tc decreased by 20% 

10 'tc increased by 1 0% 22 'tc increased by 20% 

11 k decreased by 1 0% 23 k decreased by 20% 

12 k increased by 1 0% 24 k increased by 20% 

of the 24 sensitivity analyses. Only one parameter value was adjusted at a time so that 

the relative impact of each parameter on the outcome of the analysis could be determined. 

The sensitivity of the model to changes in bank geometry were not included in the 

sensitivity analysis, as the survey data collected for the 2003 erosion analysis was very 

detailed and considered to be an accurate depiction of the stream bank at each cross

section location. 

The phreatic surface was assumed to be located at the ground surface for all 

analyses. This is the most critical water table condition for the stability of the 

streambank, and it was held at as a constant so that only the changes to parameter values 

would contribute to changes in the outcome of the stability analysis. Table 6.2 contains a 

list of the soil types found in cross-section 2, and the default parameter values for each 

type. These values were increased and decreased by 10 and 20% for the sensitivity 

analysis. 

In addition to varying the parameter values, the timing of the hydrograph was also 

decreased by various factors to determine whether this would have a significant effect on 
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Table 6.2 Default Parameter Values for Soil Layers in Cross-Section 2 

Soil Type <p' c' y <j)b 'tC k 
(deg) (kPa) (kN/m3) (de g) (Pa) (cm3/Ns) 

Stiff clay, moderate cohesive 20 15 18 15 5.0 0.045 
Silt, moderate cohesive 30 3 18 15 5.0 0.045 

Soft clay, erodible cohesive 25 10 18 15 0.1 0.316 
Angular sand, coarse sand 36 0 18 15 0.5 0.141 

the outcome of the erosion calculations and stability analyses. The selected outflow 

hydrograph was the High Flow scenario, and the variation in water surface elevation at 

cross-section 2 during this hydrograph is shown in Figure 6.2 below. Also shown in this 

Figure are the shortened hydrographs used in this phase of the analysis. 

The purpose of shortening the original stage hydro graph was to determine 

whether the rate of increase and/or decrease of the hydro graph would have a significant 

effect on the total erosion of the bank or the bank stability. This is especially important 

in the drawdown portion of the hydrograph, when the confining pressure of the river 

decreases suddenly, and the bank remains saturated. 

6.4. RESULTS 

The area of eroded material for each sensitivity analysis was compared with those 

obtained using all default values for the soils, and a percent increase or decrease caused 

by varying each parameter was calculated. Figures 6.3 and 6.4 are bar graphs which 

allow for a visual comparison of the impacts of each parameter on the amount of erosion. 

As can be seen from these figures, the two parameters which appear to have the most 

significant effect on the amount of area eroded from the cross-section are the critical 

shear stress and the erodibility coefficient of the soil, with variations of the erodibility 

resulting in the greatest differences. The other parameters do not significantly affect the 

amount of erosion, increasing it by zero to 0.1 0%. This is a reasonable finding, as the 

critical shear stress and erodibility coefficient are the main factors used in the calculation 

of the amount of erosion. 
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It is interesting to note that decreasing the critical shear stress of the soil caused 

only a very slight increase in the amount of erosion; however, an increase of the critical 

shear stress by 10% and 20% resulted in decreases of 3. 7 and 3.8%, respectively, in the 

amount of area eroded from the cross-section with respect to the erosion occurring with 

the default parameters. The greater the critical shear stress of the soil, the less erosion of 

the cross-section occurred; however, there was only a slight difference between the 

erosion amounts that occurred with an increase of I 0% versus 20%. 

As anticipated, there is a positive correlation between the magnitude of the 

erodibility coefficient and the amount of eroded material. When the erodibility was 

decreased by 10 and 20%, the resulting erosion decreased by 7.3 and I5.6%, respectively. 

Conversely, an increase in the erodibility of I 0 and 20% resulted in an increase in erosion 

of 3.9 and 12.0%, respectively. 

In addition to comparing the area of eroded material and its relationship to 

variations in values of the soil parameters, the FSs at each time step in the hydrograph for 

the default values and the various sensitivity analyses were also compared. The percent 

decrease in the minimum FS and increase in the maximum FS were plotted for each 

analysis, and are shown in Figures 6.5 and 6.6. The parameter adjustments that caused 
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the greatest percentage range between the minimum and maximum FS were a decrease in 

the erodibility coefficient, an increase in the friction angle, an increase in the erodibility 

coefficient, a decrease in cohesion, and an increase in the critical shear stress for the soil 
' 

resulting in ranges of91.6, 87.1, 82.9, 80.6 and 76.1%, respectively. 

The FS at every time step was plotted for each given set of parameters, and all 

plots are provided in Appendix C. From these plots it was possible to determine those 

parameters which caused the greatest percent decrease and increase in the FSs for each 

scenario. An increase in the critical shear stress of the soil, decrease in the erodibility 

coefficient and decrease in the friction angle of the soils caused the greatest decreases in 

the minimum FS, with decreases of 52, 33.3 and 33%, respectively. An increase in the 

friction angle, decrease in cohesion, increase in erodibility coefficient and decrease in 

erodibility coefficient caused the greatest increases in the maximum FS, with increases of 

87.1, 65.2, 60.9 and 58.3%, respectively. 

Shortening the duration of the hydrograph also had a significant impact on the 

amount of erosion and the stability of the stream bank. The total area of eroded material 

from the cross-section for the hydrographs where the time step was shortened from 24 

hours to 12, 6 and 3 hours was 120.8, 141.6, and 147.2 m2, respectively. This represents 

increases of 20.9, 41.7 and 47.3 % over erosion resulting from the original hydrograph 

with 24-hour time steps. These results indicate that the more quickly the water surface 

elevation rises and draws down within a cross-section, the more amount of material is 

eroded. This is an expected conclusion, as rapid changes in water surface elevation result 

in rapid changes in the velocity gradient and shear stresses within the channel, which are 

the predominant factors in determining the amount of erosion that occurs. 

Shortening the time step of the outflow hydro graph did not have a significant impact on 

the magnitude of the minimum FS calculated for the cross-section. The minimum FS 

resulting from the original hydrograph was 0.16, and the minimum FSs from the 

hydrographs where the time step was shortened from 24 hours to 12, 6 and 3 hours were 

0.06, 0.17 and 0.09, respectively. In all cases, the minimum FS occurred when the water 

surface elevation within the channel was also at its minimum, which is the portion of the 

hydrograph where confining pressure from the flow is at a minimum. 
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6.5. CONCLUSIONS 

The results of the sensitivity analysis indicate that the soil parameters that have 

the greatest impact on both the amount of material eroded from the cross-section as well 

as the stability of the bank were the erodibility coefficient and the critical shear stress of 

the soil layers, indicating that the BSTEM analysis is most sensitive to changes in these 

parameters. The stability is also significantly affected by variations in the friction angle 

and cohesion of the soils. The findings ofthis sensitivity analysis are consistent with 

those of Jha et al. (2005), which determined that two of the four parameters to which 

bank erosion and stability are most sensitive are the erodibility coefficient and critical 

shear stress of the bank material [11]. 

The amount of material eroded is also affected by the rate at which the water 

surface elevations within the cross-section increase and decrease. More rapid changes in 

the flow elevation resulted in more material being eroded. Changes in the rate of the 

hydro graph did not, however, appear to impact the stability of the bank. 
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7. RESULTS AND DISCUSSION 

The impacts of releases from Bagnell Dam were quantified by calculating the 

amount of eroded bank and toe material, the erosion rate, and the FS throughout various 

outflow hydrographs at each cross-section. The initial analyses were completed 

assuming that the phreatic surface was located at the ground surface throughout the entire 

duration of the hydro graphs. Figures 7 .I through 7.22 illustrate the volume of eroded 

material per unit length along the reach (m2) from the cross-sections during each outflow 

scenario, and the estimated average rate of erosion that occurred throughout each flood 

event. 
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These graphs allow for a visual comparison of the effects of the various outflow 

scenarios. The High Flow scenario caused the greatest amount of erosion for 10 of the 11 

cross-sections. The High Flow, Summer Generation and Hypolimnia scenarios caused 

the greatest amount of erosion in 6 cross-sections, in order from highest to lowest. For 8 

of the cross-sections, the Summer Low Flow scenario caused the least amount of erosion. 

The Hypolimnia scenario caused the highest rate of erosion (m2/hr) in 6 of the 

cross-sections, and the erosion rates of the remaining 5 cross-sections were highest 

during the High Flow scenario. In 6 of the cross-sections, the 3 outflow scenarios that 

caused the highest erosion rates were Hypolimnia, High Flow and Summer Generation, in 

order from highest to lowest. The Fall Rebound scenario caused the lowest erosion rate 

in 9 ofthe II cross-sections. 

Based on these findings, it was determined that the Hypolimnia, High Flow and 

Summer Generation scenarios were the most critical for the Osage River downstream of 

Bagnell Dam. A stability analysis for these 3 scenarios was performed for all cross

sections. For 8 cross-sections, the Summer Generation scenario resulted in the lowest FS 

or highest bank instability. One of the cross-sections, cross-section 3, was most unstable 

during the High Flow scenario, and the remaining 2 sections, numbers 6 and 9, were 
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stable throughout the entire duration of all three scenarios. Figures 7.23 through 7.26 are 

plots depicting the variations of the FS for several cross-sections during the most critical 

scenario for each cross-section. The water surface elevation is also plotted alongside the 

FS to illustrate the impacts of the fluctuating water surface elevation on the FS. 

Appendix D contains the remaining plots of the critical outflow scenarios for those cross

sections not included below. Cross-sections 6 and 9 are not included in this Appendix 

because they did not fail in BSTEM for any of the outflow scenarios. 

In terms of the total amount bank and toe erosion, the most critical outflow 

scenario was the High Flow scenario. The second and third most critical scenarios were 

the Summer Generation and Hypolimnia scenarios, respectively. This is consistent with 

the findings of the 2003 erosion analysis. When evaluating the average erosion rates, the 

most critical scenarios are Hypolimnia, High Flow and Summer Generation, in order 

from highest to lowest erosion rates. The Summer Generation scenario was the most 

critical in terms of bank instability along the lower Osage River, followed by the High 

Flow scenario. An example of a typical failure surface is provided in Figure 7.27. This 

figure also demonstrates the changes that occurred due to bank and toe erosion. 
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A stability analysis was also completed for all the cross-sections neglecting the 

effects of bank toe erosion. During this analysis, the minimum FS always occurred when 

the water surface elevation within the channel was at a minimum. Without taking into 

account toe erosion, 7 of the 11 cross-sections were either conditionally stable or stable 

for all ranges of water surface elevations evaluated. This suggests that the banks along 

the lower Osage River are actually quite stable during all of the outflow scenarios when 

toe erosion is omitted from the analysis. This finding is consistent with Simon et al. 

(2003), in which it was determined that the banks of the Missouri River were very stable 

when non-eroded; however, when the analysis accounts for toe erosion, bank failure 

becomes increasingly more likely [9]. 

The effects of varying the assumption regarding depth to the phreatic surface are 

shown in Figures 7.28 through 7.30. GW Assumption 1 is the original assumption that 

the phreatic surface remained at the ground surface, and GW Assumption 2 assumed a 
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drawdown of the phreatic surface equal to one-tenth of drawdown of the water surface 

elevation. As demonstrated by these plots, when the water table within the bank was 

assumed to drawdown at a rate equal to one-tenth the drawdown rate of the water surface 

elevation, the bank was significantly more stable throughout the studied outflow 

scenarios. The FS at some time steps within these scenarios was greater than 4 times the 

FS determined when assuming that the phreatic surface remained at the ground surface. 

This vast difference in stability points out the dependency of the bank stability on the 

water table elevation within the bank, and the resulting pore water pressures. This is also 

consistent with Simonet al. (2003), which found that infiltration, toe erosion and 

geotechnical failure all work together to promote bank instability, and the omission of 

even one of these factors can lead to the stability to be significantly overestimated (9]. 



www.manaraa.com

This report also recommended the use of a seepage model coupled with the stability 

model in order to obtain the most accurate results. 

57 

The effects of the hydrograph drawdown rate were discussed at length in the sensitivity 

analysis. The results of varying the rate of rise and drawdown of the hydro graphs 

indicated that increasing the drawdown rate ofthe water surface elevation resulted in 

more erosion of the bank and toe, but did not affect bank stability significantly. This is 

inconsistent with the results reported in Simonet al. (2003), which indicated that a slower 

drawdown allows for phreatic surface to drawdown sufficiently such that the pore water 

pressures dissipate, and the bank is more stable [9]. The source of this inconsistency is 

that the phreatic surface in the current study was assumed to remain at the ground surface 

throughout this portion of the analysis, and the dissipation of pore water pressures was 

not taken into account. It is likely that if the pore water pressures were decreased in this 

portion of the study, the stability analysis would demonstrate that the banks are indeed 

more stable with a slower drawdown rate. 
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Comparison plots of the original cross-section geometry and the most critical 

eroded cross-section geometry for all sections are provided in Appendix E. The most 

critical eroded geometries are those resulting from the outflow scenario that caused the 

greatest amount of erosion. In addition, plots showing the fluctuations of the FS during 

various outflow scenarios are provided in Appendix D. 

59 
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8. CONCLUSIONS AND RECOMMENDATIONS 

The results of this analysis indicate that the outflow scenarios resulting in the 

greatest amount ofbank and toe erosion were the High Flow, Summer Generation and 

Hypolimnia scenarios, in order from the greatest amount of erosion to the least. The 

Summer Generation scenario was the most critical in terms of bank instability along the 

lower Osage River, followed by the High Flow scenario. 

60 

The overall stability of the banks is largely dependent on the depth of the phreatic 

surface and whether bank and toe erosion were included in the analysis. The stratigraphy 

of the banks contributed greatly to the failure mechanism that was most common in this 

analysis. The majority of the cross-sections were composed of cohesive soils in the 

upper portion of the bank supported by noncohesive soils. This resulted in the prevailing 

failure mechanism being mass wasting or cantilever failures that occurred when the toe 

had eroded to the point where there was not sufficient support for the cohesive layer. 

The rate at which the hydrographs ramped up and drew down also impacted the 

stability of the banks. While the rapid changes in outflow did not contribute directly to 

bank instability, they resulted in more erosion of the bank toes, which subsequently led to 

mass wasting and cantilever failures. It is possible that slowing the ramp up and 

drawdown phases of the critical outflow scenarios would result in less toe erosion and 

less subsequent mass wasting, but this may not be possible due to the need to meet 

peaking demands. If possible, it may be beneficial to attempt to determine typical peak 

power demands and when they occur, so that releases may begin being made before the 

demands are at their peaks. This would allow for a slower ramp up phase of the outflow 

hydrographs. In addition, once the peak power demands have passed, slowing the rate at 

which releases are decreased would result in less erosion and possibly less bank 

instability. Slowing the drawdown phase would also allow for pore water pressures to 

decrease while at the same time providing for continued confining pressure from the 

nver. 

This analysis provided quantitative data demonstrating the effects of the various 

outflow scenarios from Bagnell Dam on erosion and stability of the banks of the lower 

Osage River. Although the data used as the basis for this analysis was reasonably 
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accurate, a more refined model could be developed if additional, more detailed field data 

were collected. Based on the results of the sensitivity analysis and the impacts of varying 

the water table elevation, it is possible to recommend the most useful additional data to 

collect. It is important to narrow the data collection to only those variables that will have 

the greatest impact on the outcome of the analysis, because there is a large amount of 

geotechnical and groundwater data that can be collected, and this can be expensive and 

time-consuming. 

The effects of varying the water table elevation have a significant effect on bank 

stability. Because it is very difficult to accurately predict the drawdown rate of the water 

table within a bank in relation to the drawdown of the flow within the channel, obtaining 

accurate groundwater data and its relationship to variations in the water surface elevation 

would improve significantly the accuracy of the stability analysis of the lower Osage 

River. This could be accomplished through the installation of piezometers in the 

streambanks at each cross-section location, and the continuous monitoring of water table 

elevations and streamflow elevations. 

The accuracy of the stability analysis could also be increased by incorporating a 

seepage analysis into the stability analysis. If possible, one or more programs could be 

used so that fluvial erosion, pore water pressures, stability, and how they affect one 

another could all be analyzed simultaneously. This is consistent with Darby eta!. (2007) 

which recommended the "coupling [of] a hydraulic erosion model with a finite element 

seepage analysis and limit equilibrium stability methods to address transient mass 

wasting triggered by bank profile deformation and/or variations in bank pore water 

pressures" [8]. 

In addition to the collection of groundwater data, there are several geotechnical 

properties of the stream bank soils that could be measured to enhance the confidence in 

the accuracy of the erosion and stability analysis. The two most significant ones are the 

critical shear stress of the soil and its erodibility. If it is possible to collect data in 

addition to these properties, the friction angle and cohesion of the various soils would be 

the properties with the next highest priority in terms of impact on stability. 

It may be possible to reduce the adverse effects of hydropower releases from 

Bagnell Dam on bank erosion and instability through the installation of toe protection 
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along the lower Osage River. If the amount of toe erosion could be significantly reduced, 

the stability of the banks would be greatly increased, resulting in fewer mass failures and 

less bank migration. BSTEM contains an option to include toe protection in the erosion 

analysis. Additional model runs which include toe protection can then be carried out to 

determine the best form of protection, if any, for each stream reach. 

This study provided a thorough analysis ofthe impacts of various outflow release 

patterns from Bagnell Dam on erosion and bank stability along the lower Osage River. 

This is especially important to landowners whose property abuts the river, as migration of 

the banks results in a loss of property. The most critical outflow scenarios were 

identified, as well as recommendations for future refinements of the model to possibly 

introduce optimum adjustments to the outflow patterns in order to minimize the 

detrimental effects to the streambanks. 
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APPENDIX A 

MAP SHOWING CROSS-SECTION LOCATIONS 
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Figure A.l Map Showing Cross-Section Locations [2] 
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APPENDIX B 

CROSS-SECTION DATA 
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SENSITIVITY ANALYSIS FACTOR OF SAFETY PLOTS 
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APPENDIX D 

CRITICAL FACTOR OF SAFETY PLOTS 
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ORIGINAL AND ERODED CROSS-SECTIONS 
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Figure E.8 Erosion Resulting from Summer Generation Scenario at Cross-Section 9 
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